skip to main content


Search for: All records

Creators/Authors contains: "Nešić, Srdjan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electrochemical atomic force microscopy (EC-AFM) experiments, including simultaneous linear polarization resistance (LPR) tests and in situ AFM imaging, under a CO2 atmosphere, were performed to investigate the adsorption characteristics and inhibition effects of a tetradecyldimethylbenzylammonium corrosion inhibitor model compound. When the inhibitor bulk concentration was at 0.5 critical micelle concentration (CMC), in situ AFM results indicated nonuniform tilted monolayer formation on the mica surface and EC-AFM results indicated partial corrosion of the UNS G10180 steel surface. At 2 CMC, a uniform tilted bilayer or perpendicular monolayer was detected on mica, and corrosion with UNS G10180 steel was uniformly retarded. Consistently, simultaneous LPR tests showed that corrosion rates decreased as the inhibitor concentration increased until it reached the surface saturation value (1 and 2 CMC). Molecular simulations have been performed to study the formation of the inhibitor layer and its molecular-level structure. Simulation results showed that at the initiation of the adsorption process, islands of adsorbed inhibitor molecules appear on the surface. These islands grow and coalesce to become a complete self-assembled layer. 
    more » « less
  2. null (Ed.)
    While both field experience and laboratory experiments have shown that the efficiency of adsorbed corrosion inhibitor films improves upon exposure of the aqueous solution to a hydrocarbon phase, a credible explanation of these results is lacking. Using a combination of experiments and molecular simulations, this study examines how exposure to oil molecules affects the nature of adsorbed corrosion inhibitor films on metal surfaces. It is found that oil molecules get coadsorbed in the corrosion inhibitor films, making them more hydrophobic, structurally more ordered, and well packed. Corrosion inhibitor molecules with a bulky polar head adsorb in nonplanar, cylinder-like morphologies. Coadsorption of oil molecules changes the morphology of these films to a planar self-assembled monolayer. 
    more » « less